Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(45): 16712-16719, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37899671

RESUMO

This study investigates the effect of hydrostatic pressure on the luminescence properties of CsPbBr3 single crystals at 12 K. The luminescence at the edge of the band gap reveals a structure attributed to free excitons, phonon replica of the free excitons, and Rashba excitons. Changes in the relative intensity of the free and Rashba excitons were observed with increasing pressure, caused by changes in the probability of nonradiative deexcitation. At pressures around 3 GPa, luminescence completely fades away. The red shift of the energy position of the maximum luminescence of free and Rashba excitons in pressure ranges of 0-1.3 GPa is attributed to the length reduction of Pb-Br bonds in [PbBr6]4- octahedra, while the high-energy shift of the Rashba excitons at pressures above 1.3 GPa is due to [PbBr6]4- octahedra rotation and changes in the Pb-Br-Pb angle.

2.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512359

RESUMO

This study aims to determine the optimum composition of the CeBr1-xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3+ ions. The band energy structures for CeBr2I and CeBrI2 crystals were calculated using the projector augmented wave method. The valence band was found to be formed by the hybridized states of 4p Br and 5p I. The 4f states of Ce3+ are located in the energy forbidden band gap. The conduction band is formed by the localized 5d1 states, which are created by the interaction between the 5d states of Ce3+ and the 4f0 hole of the cerium ion. The higher-lying delocalized 5d2 states of Ce3+ correspond to the energy levels of the 5d states of Ce3+ in the field of the halide Cl0 (Br0) hole. The relative location of 5d1 and 5d2 bands determines the intensity of 5d-4f luminescence. The bottom of the conduction band is formed by localized 5d1 states in the CeBr2I crystal. The local character of the bottom of the conduction band in the CeBr2I crystal favors the formation of self-trapped Frenkel excitons. Transitions between the 5d1 and 4f states are responsible for 5d-4f exciton luminescence. In the CeBrI2 crystal, the conduction band is formed by mixing the localized 5d1 and delocalized 5d2 states, which leads to quenching the 5d-4f luminescence and a decrease in the light output despite the decrease in the forbidden band gap. CsBr2I is the optimum composition of the system to achieve the maximum light output.

3.
Materials (Basel) ; 15(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431422

RESUMO

The energy band structure, as well as partial and total densities of states have been calculated for LaF3:Yb and LaF3:Lu crystals within density functional theory using the projector augmented wave method and Hubbard corrections (DFT + U). The influence of geometric optimization on the results of energy band calculations of LaF3:Ln crystals (Ln = Yb, Lu) was analysed and the absence of relaxation procedure is confirmed to negatively influence the energy position of states, and the variability between obtained results of different optimization algorithms are within the calculation accuracy. The top of the valence band of LaF3 is confirmed to be formed by the 2pF--states and the bottom of the conduction band is formed by the 5d-states of La3+. The positions of the 4f-states and 5d-states of activator ions in LaF3 were studied. It is shown that the 4f-states of Yb3+ are slightly above the top of the valence band and the 4f-states of Lu3+ to be 3.5 eV below the top of the valence band. The energy levels of the 5d states of the impurities are energetically close to the bottom of the LaF3 conduction band. The calculated band gap of 9.6 eV for LaF3 is in a good agreement with the experimental result and is not affected by impurity ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...